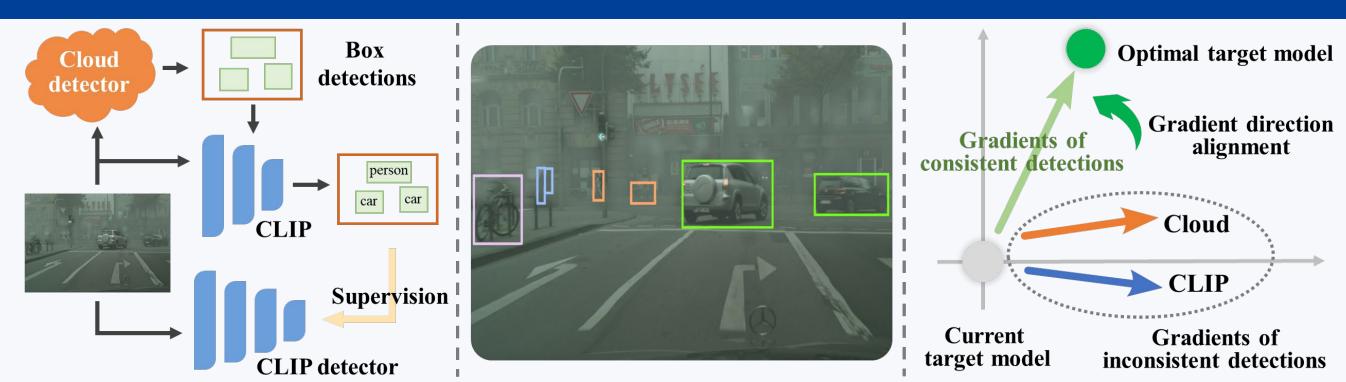


Cloud Object Detector Adaptation by Integrating Different Source Knowledge

Shuaifeng Li¹ Mao Ye^{1*} Lihua Zhou¹ Nianxin Li¹ Siying Xiao¹ Song Tang² Xiatian Zhu³

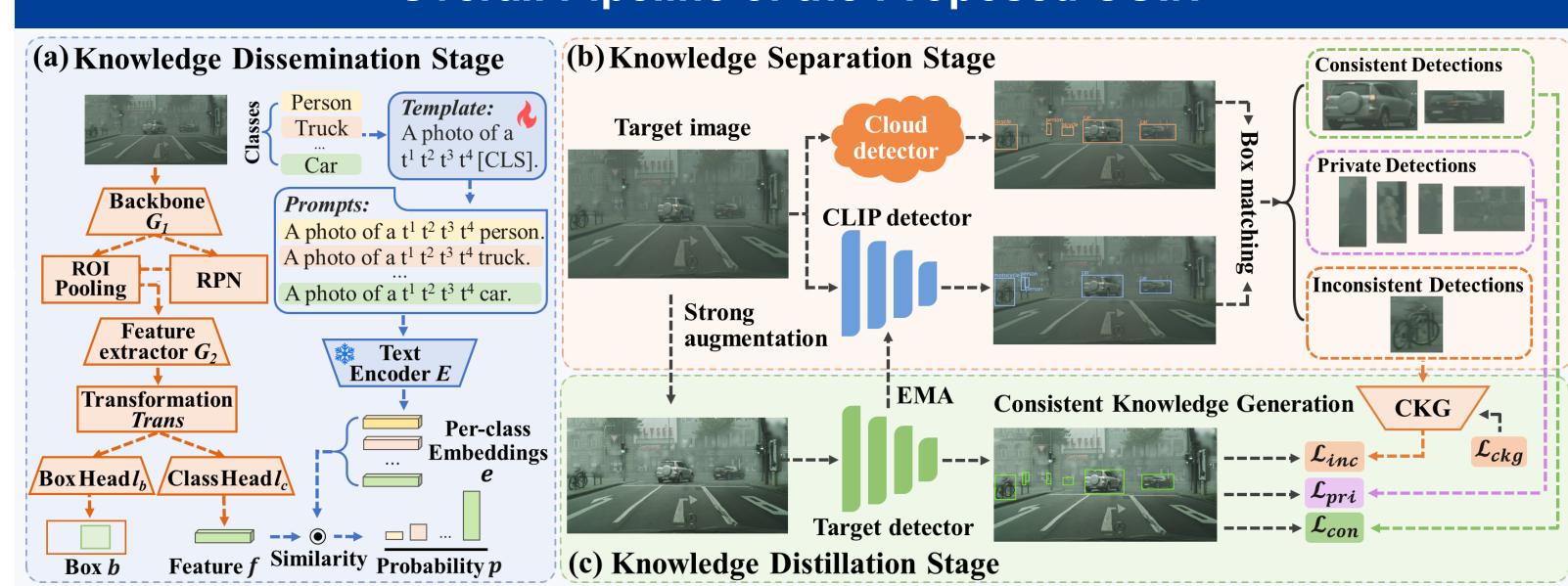
¹University of Electronic Science and Technology of China ²University of Shanghai for Science and Technology ³University of Surrey


CODA: Cloud Object Detector Adaptation Large cloud detector,

CODA enables open target scenarios and open object categories adaptation due to large grounded pre-training of cloud detector.

Conditions	UDAOD	SFOD	Black-box DAOD	CODA
Source data access	✓	×	×	×
Source model access	✓	~	×	×
Cloud API access	×	×	✓	~
High domain similarity	✓	✓	✓	×
Ability				
Flexible architecture	×	×	✓	✓
Open categories	×	×	×	✓
Open scenarios	X	×	×	~

Idea and Contributions



- (a) Knowledge Dissemination (b) Knowledge Separation
- (c) Knowledge Distillation
- 1. Knowledge dissemination disseminates knowledge to a CLIP detector.
- 2. Knowledge separation separates detection results into three kinds.
- 3. Knowledge distillation fuses inconsistent detections by learning a CKG network using a self-promotion gradient direction alignment.

Contributions:

- Propose to explore a promising problem CODA.
- Propose a novel method COIN that acts in a divide-and-conquer manner.
- Propose a novel decision-level fusion strategy driven by gradient alignment.

Overall Pipeline of the Proposed COIN

Knowledge dissemination pre-trains the CLIP detector with prompt learning:

 $\min_{\alpha} \mathcal{L}_{RPN} + \mathcal{L}_{ROI} + \lambda \mathcal{L}_{align}^{1}$

Knowledge separation divides detections by box matching, resulting:

$$\hat{\mathcal{P}} = \{ (\boldsymbol{y}_{cld}^{i}, \boldsymbol{y}_{clip}^{j}) | \Gamma_{i,j} = 1, \boldsymbol{l}_{cld}^{i} = \boldsymbol{l}_{clip}^{j} \}, \tilde{\mathcal{P}} = \{ (\boldsymbol{y}_{cld}^{i}, \boldsymbol{y}_{clip}^{j}) | \Gamma_{i,j} = 1, \boldsymbol{l}_{cld}^{i} \neq \boldsymbol{l}_{clip}^{j} \}$$

$$\mathcal{Q} = \{ \boldsymbol{y}_{cld}^{i} | \Gamma_{i,*} = 0 \} \cup \{ \boldsymbol{y}_{clip}^{j} | \Gamma_{*,j} = 0 \}$$

- Knowledge distillation distills detections to target detector, and fuses inconsistent detections with a CKG network, which is trained by a gradient direction alignment:
- $\hat{\boldsymbol{g}} = \nabla_{\theta_T} \|\hat{\boldsymbol{p}}_{stu} \mathbb{I}(\hat{\boldsymbol{l}}_m)\|_2, \quad \tilde{\boldsymbol{g}} = \nabla_{\theta_T} \|\tilde{\boldsymbol{p}}_{stu} \tilde{\boldsymbol{p}}_{ckg}\|_2 \quad \min_{\theta} \mathcal{L}_{ckg} = (1 sim(\hat{\boldsymbol{g}}, \tilde{\boldsymbol{g}})) + L_{kl}(\hat{\boldsymbol{p}}_{ckg}, \mathbb{I}(\hat{\boldsymbol{l}}_m))$

Experiments on Benchmarks

Table 1: Results on Foggy-Cityscapes and BDD100K under GDINO. Object detection adaptation settings: U – Unsupervised, SF – Source-free, BB – Black-Box, C – Cloud. det: detector.

Foggy-Cityscapes										BDD100K											
Methods	Type	Tuck	Car	Rder	Pson	Tain	Mcle	Bcle	Bus	mAP	I	Methods	Type	Tuck	Car	Rder	Pson	Mcle	Bcle	Bus	mAP
MTOR [3] ICR-CCR[59]	U U						28.3 30.3					SIGMA++ <mark>[34]</mark> PT <mark>[7]</mark>	U U				47.5 40.5				
SED [35] LODS [33] A ² SFOD [10] IRG [53] LPU [9] BiMem [67]	SF SF SF SF BB	27.3 28.1 24.4 24.0	48.8 44.6 51.9 55.4	45.7 44.1 45.2 50.3	34.0 32.3 37.4 39.0	19.6 29.0 25.2 21.2	28.4 33.2 31.8 31.5 30.3 32.4	37.8 38.9 41.6 44.2	39.7 34.3 39.6 46.0	35.8 35.4 37.1 38.8]]]	SED [35] PETS [39] A ² SFOD [10] BT [13] LPU [9] DRU [28]	SF SF SF SF SF	19.3 33.2 24.2 24.5	62.4 36.3 50.4 55.2	34.5 50.2 34.6 38.9	32.4 42.6 26.6 32.7 41.4 45.8	17.0 28.2 24.7 20.9	26.3 24.4 28.5 30.4	16.9 22.5 24.9 23.2	31.3 31.6 31.4 33.5
Cloud det [40] CLIP [47] CLIP det COIN	C C C	9.7 8.2	28.6 46.9	11.5 27.5	19.5 34.1	1.1 16.5	34.6 12.8 24.9 32.7	17.9 31.5	21.9 36.2	15.4 28.2	(Cloud det [40] CLIP [47] CLIP det COIN	C C C	23.6 34.3	31.1 53.4	4.4 14.1	49.2 6.7 31.7 45.5	18.0 28.7	11.4 24.6	27.736.7	17.5 31.9
Oracle	_	32.5	67.1	50.8	46.7	43.1	34.4	43.2	54.4	46.5	(Oracle	-	54.0	70.6	42.3	51.4	35.8	41.5	53.2	49.8

Experiments on Benchmarks

Table 3: Quantitative results on **KITTI** under GDINO. U – Unsupervised, C – Cloud. det: detector.

Type	Methods	AP of Car	Methods	AP of Car	Methods	AP of Car	Methods	AP of Car
	DA-Faster [8]	64.1	MAF [23]	72.1	SCL [50]	72.7	ATF [24]	73.5
	Cloud det [40]	45.2	CLIP [47]	62.1	CLIP det	79.9	COIN	80.8

Table 4: Quantitative results on Cityscapes and Sim10K under GDINO. C – Cloud. det: detector.

			Cityscapes										
Methods	Type	Truck	Car	Rider	Person	Train	Mcycle	Bcycle	Bus	mAP	Car		
Cloud det [40]	С	37.5	59.9	16.4	43.4	26.1	42.7	48.4	62.6	42.1	46.5		
CLIP [47]	C	15.9	36.9	15.5	27.8	0.9	15.7	20.5	31.8	20.6	46.4		
CLIP det	C	11.3	55.8	35.1	39.1	33.8	32.0	33.7	44.7	35.7	60.0		
COIN	C	26.9	64.3	47.5	47.0	26.4	44.4	46.9	52.8	44.5	62.4		
Oracle	-	34.7	70.4	56.4	50.5	43.0	38.7	46.9	58.9	49.9	79.2		

Table 6: Ablation study for decision-level fusion of inconsistent detections on Foggy-Cityscapes under GDINO. Detections are filtered by $\pi = 0.7$ for fair comparison. det: detector. probs: probabilities. avg: average. s-avg: score-weighted average.

Methods	Truck	Car	Rider	Person	Train	Mcycle	Bcycle	Bus	mAP
COIN w/ cloud det probs	25.1	56.1	45.3	40.1	20.5	33.7	41.3	39.3	37.7
COIN w/ CLIP det probs	22.1	56.4	44.5	39.5	26.8	32.4	40.4	42.4	38.1
COIN w/ avg	24.8	55.8	44.1	39.9	21.7	32.8	40.9	43.7	38.0
COIN w/ s-avg	24.2	56.4	45.9	40.7	24.1	31.3	40.4	41.7	38.1
COIN w/ CKG	27.4	57.9	42.3	41.6	25.9	32.7	41.2	43.1	39.0

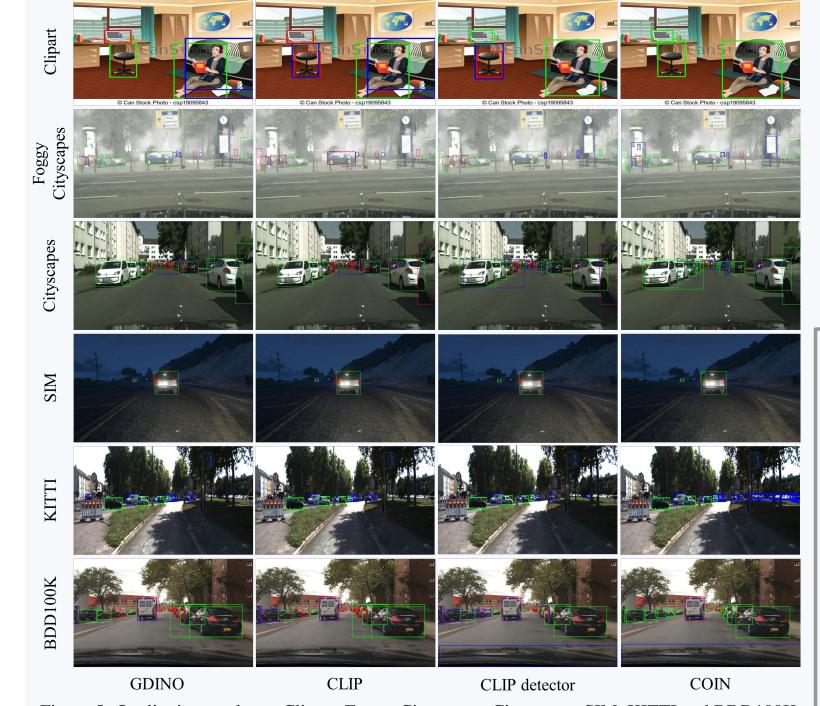


Figure 5: Qualitative results on Clipart, Foggy-Cityscapes, Cityscapes, SIM, KITTI and BDD100K reen, red and blue boxes represent true positives (TP), false negatives (FN) and false positives (FP),

Our COIN achieves the state-of-theart performance on all datasets, and the proposed CKG works as above. For more information about this work, please refer to the full paper or slides with the following links.

Feel free to contact me!